Ultra High-k HfZrO₄ Thin Films Grown by Atomic Layer Deposition using Metal-Organic and Brute HOOH precursors ¹Harshil Kashyap, ²Marshall Benham ²Jeffrey Spiegelman, ¹Andrew Kummel ¹University of California San Diego ²Rasirc ### Abstract Lower leakage at low EOT is a requirement for DRAM application. High-k materials such as TiO₂ have shown low EOT (3.5A-4A) but suffer from small band gap and high leakage¹. Ferroelectric/antiferroelectric HfZrO₄ films have shown high-k at 10nm but as the films are scaled, the dielectric properties of the films decrease^{2,3}. The key to low EOT is to find a material with high-k at 5 nm or sub-5nm thickness with low leakage. In the present study, HfZrO₄ films were fabricated with HOOH and metal organic precursors which demonstrate very high-k (~88) at 5 nm thickness with TiN and W electrodes in metal-insulator-metal (MIM) device structure. ## **Experimental** Metal-Insulator-Metal were fabricated with HfZrO₄ thin films. 5nm HfZrO₄ was grown by ALD on sputtered TiN and W substrates at 275 °C using tetrakis(dimethylamino)hafnium (TDMAH), tetrakis(dimethylamino)zirconium (TDMAZ) and H₂O₂. HfZrO₄ thickness was determined by cross-sectional TEM and were between 5.0 and 5.5 nm. TiN and W electrodes were deposited by magnetron sputtering. Top electrodes were patterned by photolithography. Samples were annealed in N₂ at 600°C for 2 minutes. Control samples with H₂O were also fabricated for comparison with TiN and W electrodes The fabricated devices were characterized using Keithley 4200A parameter analyzer. ### **Results and Discussion** Fig 1 shows the C-V measurements for HfZrO₄ films deposited with HOOH. Control samples made with H₂O were used for comparison. For HfZrO₄ using HOOH with TiN electrodes, there are 4 switching peaks in the C-V consistent with presence of the AFE phase (Fig. 1a). HZO with 1:1 Hf:Zr ratio is known to show FE switching; however, use of HOOH precursor may lead to Ti diffusion from TiN substrate into the HZO film. Small amounts of Ti are known to stabilize the AFE phase in HZO⁴. To study the impact of metal electrodes, samples with sputtered W electrodes were fabricated since W is known to show enhanced FE/AFE switching in HZO films. Undoped HZO with 1:1 Hf:Zr and W electrodes grown with HOOH (Fig 1b) shows only FE switching and no AFE switching. When using HOOH, both the samples with TiN and W electrodes show record high capacitance for 5 nm films (> $10 \, \mu F/cm^2$). HfZrO₄ films in ferroelectrics literature show a wide range of k values. Extrinsic contributions to k value from domain walls play an important role. A higher vol% of domain walls may be key to the extremely high-k observed in films fabricated using HOOH vs H₂O. TEM will be performed to verify this hypothesis. Fig 2 shows suppressed polarization in domain walls which are very susceptible to eternal stimuli and thus show high permittivity For DRAM application, it essential to have high-k near 0V. Fig 3 (a) shows a high-k benchmark of existing HfZrO₄ high-k literature. k@0V was extracted from C-V measurement. Both devices fabricated using HOOH show record high-k at (\sim 58 with TiN, \sim 88 with W) 5 nm thickness which results in ultra-low EOT of \sim 3.5 A with TiN and \sim 2.5 A with W. Fig 4. shows the leakage data. The sample with W electrode shows higher leakage in comparison with samples with TiN electrodes. This may be in part due to higher crystallinity in HfZrO₄ imparted by the W electrodes since major leakage pathway in crystalline HfZrO₄ thin films is grain boundaries. ## Conclusion HOOH is shown to be an excellent ALD precursor for growing high-k HfZrO₄ films. Films made with HOOH show a 2x boost in capacitance compared to films made with H₂O. This enables for ultra-low EOT films. These films are promising for next gen low-power high-density memory application. #### References Fröhlich, K.; Hudec, B.; Hušeková, K.; Aarik, J.; Tarre, A.; Kasikov, A.; Rammula, R.; Vincze, A. Low Equivalent Oxide Thickness TiO 2 Based Capacitors for DRAM Application. ECS Trans. 2011, 41 (2), 73–77. https://doi.org/10.1149/1.3633656. (2) Zhou, J.; Zhou, Z.; Jiao, L.; Wang, X.; Kang, Y.; Wang, H.; Han, K.; Zheng, Z.; Gong, X. Al-Doped and Deposition Temperature-Engineered HfO 2 Near Morphotropic Phase Boundary with Record Dielectric Permittivity (~68). In 2021 IEEE International Electron Devices Meeting (IEDM); IEEE: San Francisco, CA, USA, 2021; p 13.4.1-13.4.4. https://doi.org/10.1109/IEDM19574.2021.9720632. Das, D.; Jeon, S. High-k Hf x Zr _{1-x} O₂ Ferroelectric Insulator by Utilizing High Pressure Anneal. *IEEE Trans. Electron Devices* **2020**, 67 (6), 2489–2494. https://doi.org/10.1109/TED.2020.2985635. Park, M.H., Lee, Y.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., Müller, J., Kersch, A., Schroeder, U., Mikolajick, T. and Hwang, C.S. (2015), Ferroelectricity and Antiferroelectricity of Doped Thin HfO₂-Based Films. Adv. Mater., 27: 1811-1831. https://doi.org/10.1002/adma.201404531 Fig 1 C-V: (a) MIM capacitors with TiN electrodes. Thicknesses were 5.0 nm (HOOH) and 5.5 nm (H_2O) (b) MIM capacitors with W electrodes. HfZrO₄ films fabricated with HOOH show a ~2x boost in capacitance over films made with H_2O . Thicknesses were 5.0 nm (HOOH) and 5.5 nm(H_2O) Polarization (a.u.) **Fig 3 Benchmarking:** (a) EOT @0V vs HfZrO₄ thickness. (b) k @0V vs HfZrO₄ thickness. Record low EOT and high-k value HfZrO₄ sample fabricated using HOOH. **Fig 4 leakage:** Higher leakage with W electrodes (orange) compared to TiN electrodes (blue) may be through grain boundaries.